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Nambu Mechanics in the Lagrangian Formalism
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A Lagrangian formulation is presented as the counterpart of the Hamiltonian one
for Nambu mechanics which is a natural generalization of Hamiltonian mechanics.
If we postulate the existence of plural Lagrangians corresponding to the existence
of plural Hamiltonians, we can formulate the Lagrangian formalism in Nambu
mechanics as well as in Hamiltonian mechanics. Here, in terms of exterior
differentiation, Nambu mechanics can be formulated in a completely parallel way
to ordinary analytical mechanics, including generalized Legendre transformations.

1. INTRODUCTION

In 1973 Nambu proposed a generalization of ordinary Hamiltonian
mechanics [1] which is now called Nambu mechanics. Many authors have
since investigated its connection to the usual Hamiltonian mechanics and
its quantization.

In this paper we study Nambu mechanics in terms of the exterior differen-
tial form and show that there exist plural Lagrangians corresponding to the
number of Hamiltonians in it.

In Section 2 we explain Nambu mechanics briefly. Here a Nambu
bracket, which is a generalization of the usual Poisson bracket, is explained
as a natural generalization of the 19th century Jacobian form of the Poisson
bracket [2].

In Section 3 we outline the canonical formulation of the mechanics by
use of the Poincaré–Cartan exterior differential form V(1):
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V(1) 5 pi dqi 2 H dt

In Section 4 we introduce the analog of the same exterior differential
form for Nambu mechanics: for the three-dimensional case, it is

V(2) 5 q dp ∧ dr 2 H1 dH2 ∧ dt

This V(2) will be used for the principle of least action and “canonical”
transformations in Nambu mechanics.

In Section 5 we formulate Nambu mechanics in a “Lagrangian” formal-
ism. It is shown that we have two or more Lagrangians corresponding to the
existence of two or more Hamiltonians in Nambu’s formalism. In the case of
two Lagrangians, they are connected with the corresponding Hamiltonians as

dH1 ∧ dH2 5
1
q̇

d( pq̇ 2 L1) ∧ d(rq̇ 2 L2)

Here we see a generalized Legendre transformation in Nambu mechanics,
as will be explained later.

2. NAMBU MECHANICS

In standard analytical mechanics, the equations of motion are

5q̇ 5
­H
­p

ṗ 5 2
­H
­q

where these equations have an apparent asymmetry between q and p (q and
p denote a doublet of dynamical variables, i.e., canonical coordinates and
momenta, respectively, and H is the Hamiltonian of the system under consider-
ation). The temporal development of any function f(q, p) can be written in
terms of the Poisson bracket as

df
dt

5 { f, H} (1)

The Poisson bracket {.,.} can also be rewritten in terms of the Jacobian,

{ f, H} 5
­( f, H )
­(q, p)

as was often done in the l9th century [2]. Here we omitted the symbol of
summation for the case of plural degrees of freedom. Noticing this form,
Nambu [1] generalized formally the equations of motion (1) to
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df
dt

5 { f, H1, H2} [
­( f, H1, H2)

­(q, p, r)
(2)

where q, p, and r denote a triplet of dynamical variables and H1, H2 are two
Hamiltonians with arguments q, p, and r. Equation (2) is a natural generaliza-
tion of Eq. (1) and the extended Poisson bracket {., ., .} is called the
Nambu bracket.

Now let us study the difference between the usual Hamiltonian mechanics
and Nambu mechanics. In the usual Hamiltonian mechanics dynamical vari-
ables q, p are canonical pairs, hence the phase space spanned by (q, p) has
even dimensions. In Nambu mechanics, however, the phase space has three
or more (generally, any number of) dimensions, since Eq. (2) can be extended
to the following:

df
dt

5
­( f, H1, H2, . . . , Hn21)

­(x1, x2, x3, . . . , xn)
(3)

where (x1, . . . , xn) denotes an n-tuple of dynamical variables and H1, . . . ,
Hn21 are n 2 1 Hamiltonians. It is shown by substituting Hk for f in Eq. (3)
that each Hk is a constant of motion [or first integral of Eq. (3)]:

dHk

dt
5

­(Hk , H1, . . . , Hk , . . . , Hk21)

­(x1, x2, . . . , xn)

5 0

because the Jacobian matrix has two equal rows. From this, we realize that
in Nambu mechanics there are two or more Hamiltonians all of which are
constants of motion, while the usual Hamiltonian mechanics involves a sin-
gle Hamiltonian.

Let us return to the simplest triplet case. Substituting the triplet (q, p,
r) for f respectively in Eq. (2), we have

5
q̇ 5

­(q, H1, H2)
­(q, p, r)

5
­(H1, H2)

­( p, r)

ṗ 5
­( p, H1, H2)

­(q, p, r)
5

­(H1, H2)
­(r, q)

ṙ 5
­(r, H1, H2)

­(q, p, r)
5

­(H1, H2)
­(q, p)

(4)

We see hence the apparent asymmetry disappear, which we see in the usual
Hamiltonian equations of motion.

Then, we can prove easily
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­

­q
q̇ 1

­

­p
ṗ 1

­

­r
ṙ 5

­

­q
­(H1, H2)

­( p, r)
1

­

­p
­(H1, H2)

­(r, q)
1

­

­r
­(H1, H2)

­(q, p)

5 0

This indicates that the “divergence” of the velocity (q̇, ṗ, ṙ) in a three-
dimensional phase space vanishes, ensuring that the Liouville theorem is
valid in Nambu mechanics as well as Hamiltonian mechanics. Since the
Liouville theorem states that for an ensemble of identical systems the volume
of the phase space occupied by the ensemble is conserved, we mention
that the ensemble in the Nambu phase space is also supposed to be an
incompressible fulid.

3. HAMILTONIAN MECHANICS IN TERMS OF THE
DIFFERENTIAL FORM

In this section we outline Hamiltonian mechanics in terms of the exterior
differential form as preparation for treating Nambu mechanics by it in the
next section.

Let us begin by considering the following 1-form V(1) on R2N1l with
N-dimensional coordinates q1, . . . , qN, momenta p1, . . . , pN , and a time t:

V(1) 5 pi dqi 2 H(q, p) dt (i 5 1, . . ., N ) (5)

where the summation convention is used. The reason why the canonical
momenta pi are covariant components of a vector in the above equation
comes from the fact that pi is defined via the Lagrangian L(q, q̇) as

pi [
­L
­q̇i

The 1-form V(1), which is called the fundamental 1-form (or Poincaré–Cartan
integral invariant), plays an important role in Hamiltonian mechanics. In
fact, the principle of least action is represented in the form that the integral
of V(1) along the actual curve has an extremal:

d # V(1) 5 d # ( pi dqi 2 H dt)

5 d # ( pi q̇i 2 H ) dt

5 d # L dt 5 0 (6)

which is Hamilton’s principle.
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The exterior differential of V(1) is

dV(1) 5 dpi ∧ dqi 2 1­H
­qi dqi 1

­H
­pi

dpi2 ∧ dt

5 1dpi 1
­H
­qi dt2 ∧ 1dqi 2

­H
­pi

dt2
5 ui ∧ ri

where

5ui [ dpi 1
­H
­qi dt

ri [ dqi 2
­H
­pi

dt

This indicates the close relation between the fundamental 1-form V(1) and
the Hamiltonian equations of motion, because the Pfaffian equations

5ui [ dpi 1
­H
­qi dt 5 0

ri [ dqi 2
­H
­pi

dt 5 0

are exactly the Hamiltonian equations,

5ṗi 5 2
­H
­qi

q̇i 5
­H
­pi

(7)

Our next step is to find out how canonical transformations are expressed
in this form. Since canonical transformations are those which preserve the
Hamiltonian equations (7), we see from the above fact that the 2-form dV(1)

consists of ui and pi that canonical transformations are those which preserve
the 2-form dV(1). For example, consider a transformation (qi, pi) → (Qi, Pi)
and suppose that the fundamental 1-form of the new coordinates and momenta
system is

V(1)8 5 Pi dQi 2 K (Q, P) dt

Then the canonical transformation requires that

dV(1) 5 dV(1)8 (8)

In other words [since d(dW )5 0]



2880 Ogawa and Sagae

V(1) 5 V(1)8 1 dW (9)

where W, which should be considered as the generating function of this
transformation, is an arbitrary function. Equation (9) can be written as follows:

pi q̇i 2 H(q, p) 5 Pi Q̇i 2 K(Q, P) 1
dW
dt

(10)

Assuming that W 5 W(q, Q, t), we have

dW
dt

5
­W
­qi q̇i 1

­W
­Qi Q̇i 1

­W
­t

Substituting this equation into Eq. (10) and considering qi and Qi as indepen-
dent variables, we obtain

5
pi 5

­W
­qi

Pi 5 2
­W
­Qi

K 5 H 1
­W
­t

(11)

These equations show the relation between (q, p, H ) and (Q, P, K ).
In particular, provided that W 5 W(q, Q),

dW 5
­W
­qi dqi 1

­W
­Qi dQi

5 pi dqi 2 Pi dQi

where we employ Eq. (11). Taking the exterior differential of the above
equation, we have

dv(1) [ dqi ∧ dpi 5 dQi ∧ dPi [ dv(1)8 (12)

This equation shows the invariance of the 2-form dv(1) (which is called
the symplectic form) under the canonical transformation. Equation (12) is
equivalent to Eq. (8) in case dt 5 0.

We see of course that the expression

(dv(1))N 5 dv(1) ∧ . . . ∧ dv(1)

5 (21)N(N21)/2 N!dq1 ∧ . . . ∧ dqN ∧ dp1 ∧ . . . ∧ dpN

5 (21)N(N21)/2 N!dV

is also invariant according to Eq. (12); consequently, the volume element dV
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on the phase space is preserved under the canonical transformation (this result
corresponds to the Liouville theorem).

4. NAMBU MECHANICS IN TERMS OF THE DIFFERENTIAL
FORM

Now we extend the result of Section 3 to Nambu mechanics. For simplic-
ity, we will restrict ourselves to the three-dimensional case for a while.

The fundamental 1-form [namely, Eq. (5)] in Hamiltonian mechanics
can be generalized to the following 2-form V(2) on R4 of dynamical variables
q, p, r, and a time t [3–5]:

V(2) 5 q dp ∧ dr 2 H1 dH2 ∧ dt (13)

The reason why we choose the above 2-form in Nambu mechanics is
shown as follows: The differential of V(2) is written as

dV(2) 5 dq ∧ dp ∧ dr 2 1­H1

­q
dq 1

­H1

­p
dp 1

­H1

­r
dr2

∧ 1­H2

­q
dq 1

­H2

­p
dp 1

­H2

­r
dr2 ∧ dt

5 1dq 2
­(H1, H2)

­( p, r)
dt2 ∧ 1dp 2

­(H1, H2)
­(r, q)

dt2
∧ 1dr 2

­(H1, H2)
­(q, p)

dt2
5 u ∧ r ∧ s

where

5
u 5 dq 2

­(H1, H2)
­( p, r)

dt

r 5 dp 2
­(H1, H2)

­(r, q)
dt

s 5 dr 2
­(H1, H2)

­(q, p)
dt

Now the Pfaffian equations,
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5
u 5 dq 2

­(H1, H2)
­( p, r)

dt 5 0

r 5 dp 2
­(H1, H2)

­(r, q)
dt 5 0

s 5 dr 2
­(H1, H2)

­(q, p)
dt 5 0

are equivalent to Eqs. (4). Therefore, by analogy with the Hamiltonian case
in Section 3, Eq. (13) can be considered as the generalized fundamental 2-
form in Nambu mechanics, which corresponds to the 1-form in Hamilto-
nian mechanics.

In the following we investigate canonical transformations in Nambu
mechanics. In the same way as for Hamiltonian mechanics, we call a mapping
g: (q, p ,r) → (Q, P, R) the canonical transformation in Nambu mechanics
if g preserves the 3-form dv(2) 5 dq ∧ dp ∧ dr [which corresponds to the
generalized one of Eq. (12)]:

dv(2) 5 dq ∧ dp ∧ dr 5 dQ ∧ dP ∧ dR 5 dv(2)8

Then

dq ∧ dp ∧ dr 5 1­Q
­q

dq 1
­Q
­p

dp 1
­Q
­r

dr2
∧ 1­P

­q
dq 1

­P
­p

dp 1
­P
­r

dr2 ∧ 1­R
­q

dq 1
­R
­p

dp 1
­R
­r

dr2
5

­(Q, P, R)
­(q, p, r)

dq ∧ dp ∧ dr

Consequently

­(Q, P, R)
­(q, p, r)

5 1

By virtue of this, Eq. (2) is shown to be invariant under the canonical
transformation:

df
dt

5
­( f, H1, H2)

­(q, p, r)

5
­( f, H1, H2)
­(Q, P, R)

­(Q, P, R)
­(q, p, r)

5
­( f, H1, H2)
­(Q, P, R)
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The 2-form (13) can be easily generalized to the (n 2 1)-form on Rn11 with
x1, . . . , xn , t;

V(n21) 5 x1dx2 ∧ ??? ∧ dxn 2 H1 dH2 ∧ ??? ∧ dHn21 ∧ dt

which is the invariant form corresponding to the case of n 2 1 Hamiltonians,
n being any integer more than 3. In this case the same arguments as above
still hold.

5. EXISTENCE OF TWO OR MORE LAGRANGIANS IN
NAMBU MECHANICS

Here we consider Lagrangians in Nambu mechanics which have not
been sufficiently considered by other researchers. In what follows, we show
there exist two or more Lagrangians corresponding to two or more Hamiltoni-
ans in Nambu mechanics.

Before presenting plural Lagrangians, we comment on the single Lagran-
gian proposed by Bayen and Flato [6]. Their Lagrangian is

L(
›

x , ›ẋ ) 5 H1(
›

x ) ›ẋ ?
›

¹H2(
›

x ) (14)

(
›

x being the configuration variables). Remark that this Lagrangian is linear
in velocities. The Euler–Lagrange equation for this Lagrangian is

›ẋ 3 (
›

¹H1 3
›

¹H2) 5 0

from which we deduce
›ẋ 5 f (

›
x )(

›
¹H1 3

›
¹H2)

with an arbitrary function f (
›

x ). In the case f (
›

x ) 5 1,
›ẋ 5

›
¹H1 3

›
¹H2

5 1­(H1, H2)
­( y, z)

,
­(H1, H2)

­(z, x)
,

­(H1, H2)
­(x, y) 2 (15)

where
›

x 5 (x, y, z). Indeed, these equations are formally equivalent to Eqs.
(4), but do not well fit the statement that Nambu mechanics is a natural
generalization of Hamiltonian mechanics (recall Section 2). In Eq. (15) the
coordinates

›
x 5 (x, y, z) denote the configuration variables on the three-

dimensional space, whereas in the Nambu equations of motion (4) only q
denotes the configuration variable. The variables p and r are, so to speak,
the first canonical momentum and the second canonical momentum, respec-
tively, for the coordinate q. Moreover the canonical momenta derived in the
usual way from their Lagrangian (14), ­L/­ ›ẋ 5 H1

›
¹H2, play no role in their
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example. Thus Eq. (15) is different from the Nambu equations of motion;
the Lagrangian in the form (14) is irrelevant to Nambu mechanics.

Another Lagrangian that may be considered by examining the principle
of least action in Nambu mechanics was proposed by Takhtajan [5]. Corres-
ponding to the 1-form V(1) of the usual action integral (6) in Hamiltonian
mechanics, we consider the integral of the 2-form V(2) (13) as Takhtajan did:

## V(2) 5 ## (q dp dr 2 H1 dH2 dt)

(we omit the notation ∧ from now on). He assumed that q, p, r are functions
of two parameters t and t8 corresponding to the double integration, i.e., q 5
q(t, t8), p 5 p(t, t8), r 5 r(t, t8), and that variations dq, dp, dr are zero at the
endpoints of each parameter. Then,

## V(2) 5 ## Fq1­p
­t

dt 1
­p
­t8

dt821­r
­t

dt 1
­r
­t8

dt82
2 H1H­H2

­q 1­q
­t

dt 1
­q
­t8

dt82
1

­H2

­p 1­p
­t

dt 1
­p
­t8

dt82 1
­H2

­r 1­r
­t

dt 1
­r
­t8

dt82J dtG
5 ## Fq1­p

­t8
­r
­t

2
­p
­t

­r
­t82

2 H11­H2

­q
­q
­t8

1
­H2

­p
­p
­t8

1
­H2

­r
­r
­t82G dt8 dt (16)

Thus,

d ## V(2) 5 ## Fdq1­p
­t8

­r
­t

2
­p
­t

­r
­t82 1 qd1­p

­t8
­r
­t

2
­p
­t

­r
­t82

2 dH11­H2

­q
­q
­t8

1
­H2

­p
­p
­t8

1
­H2

­r
­r
­t82

2 H1d1­H2

­q
­q
­t8

1
­H2

­p
­p
­t8

1
­H2

­r
­r
­t82G dt8 dt

In the above expression, a collection of all the terms which involve dq is
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## F1­p
­t8

­r
­t

2
­p
­t

­r
­t82 dq

2
­H1

­q 1­H2

­q
­q
­t8

1
­H2

­p
­p
­t8

1
­H2

­r
­r
­t82 dq

2 H11­q
­t8

­2H2

­q2 dq 1
­H2

­q
­

­t8
dq 1

­p
­t8

­2H2

­p­q
dq 1

­r
­t8

­2H2

­r­q
dq2G dt8 dt

(17)

The seventh term in Eq. (17) can be written, integrating by parts and using
the previous assumption with respect to the endpoints of t8, as follows:

2 ## H1
­H2

­q
­

­t8
(dq) dt8 dt

5 ## ­

­t8 1H1
­H2

­q 2 dq dt8 dt

5 ## F ­

­q 1H1
­H2

­q 2 ­q
­t8

1
­

­p 1H1
­H2

­q 2 ­p
­t8

1
­

­r 1H1
­H2

­q 2 ­r
­t8G dq dt8 dt

5 ## F­H1

­q
­H2

­q
­q
­t8

1 H1
­2H2

­q2

­q
­t8

1
­H1

­p
­H2

­q
­p
­t8

1 H1
­2H2

­p­q
­p
­t8

1
­H1

­r
­H2

­q
­r
­t8

1 H1
­2H2

­r­q
­r
­t8G dq dt8 dt

Substituting this to Eq. (17), we see that Eq. (17) is equal to

## F1­r
­t

2
­(H1, H2)

­(q, p) 2 ­p
­t8

2 1­p
­t

2
­(H1, H2)

­(r, q) 2 ­r
­t8G dq dt8 dt

Similar calculations for dp and dr give

d ## V(2) 5 ## FH1­r
­t

2
­(H1, H2)

­(q, p) 2 ­p
­t8

2 1­p
­t

2
­(H1, H2)

­(r, q) 2 ­r
­t8J dq

1 H1­q
­t

2
­(H1, H2)

­( p, r) 2 ­r
­t8

2 1­r
­t

2
­(H1, H2)

­(q, p) 2 ­q
­t8J dp
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1 H1­p
­t

2
­(H1, H2)

­(r, q) 2 ­q
­t8

2 1­q
­t

2
­(H1, H2)

­( p, r) 2 ­p
­t8J drG dt8 dt

This indicates that if Eqs. (4) are satisfied, d ** V(2) 5 0 for arbitrary
variations dq, dp, dr. Therefore, it appears that the principle of least action
is valid also for Nambu mechanics in the above form and we have the integrand
under the action integral, which should be considered the Lagrangian function,

L(q, p, r) 5 # Fq1­p
­t8

­r
­t

2
­p
­t

­r
­t82

2 H11­H2

­q
­q
­t8

1
­H2

­p
­p
­t8

1
­H2

­r
­r
­t82G dt8

from the analogy of Eq. (6), viewing the form of V(2), (16). Though we see
that the Nambu equations of motion are derived in this way using two
parameters t and t8 for the action integral, the physical meaning of the second
paremeter t8 is ambiguous; moreover, this Lagrangian is not a suitable one
since the function does not consist of coordinates and their time derivatives. In
addition, a single Lagrangian could not provide the Legendre transformation to
generate two or more Hamiltonians.

Now, how can we obtain the genuine Lagrangians in Nambu mechanics?
For this purpose, we postulate that there exist as many Lagrangians as the
number of Hamiltonians in Nambu mechanics and that for each Lagrangian
the principle of least action holds. In the simplest case we postulate the
existence of two Lagrangians L1(q, q̇), L2(q, q̇) corresponding to the two
Hamiltonians. That is,

5
d#L1(q, q̇) dt 5 0

d#L2(q, q̇) dt 5 0

Thus we have the two Euler–Lagrange equations for the two Lagrangians:

5
­L1

­q
2

d
dt 1­L1

­q̇ 2 5 0

­L2

­q
2

d
dt 1­L2

­q̇ 2 5 0

(18)

Next we define the first canonical momentum p and the second canonical
momentum r as
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5p [
­L1

­q̇

r [
­L2

­q̇

(19)

From Eqs. (18), we see that

5ṗ 5
­L1

­q

ṙ 5
­L2

­q

(20)

Now we define the two Hamiltonians H1 and H2 through exterior differ-
entials as follows:

dH1 ∧ dH2 [
1
q̇

d( pq̇ 2 L1) ∧ d(rq̇ 2 L2) (21)

where H1 and H2 are expressed in terms of q, p, and r. Then the left-hand
side of Eq. (21) is equal to

dH1 ∧ dH2 5 1­H1

­q
dq 1

­H1

­p
dp 1

­H1

­r
dr2 ∧ 1­H2

­q
dq 1

­H2

­p
dp 1

­H2

­r
dr2

5
­(H1, H2)

­( p, r)
dp ∧ dr 1

­(H1, H2)
­(r, q)

dr ∧ dq 1
­(H1, H2)

­(q, p)
dq ∧ dp

and the right-hand side of Eq. (21) is equal to, by virtue of Eqs. (19) and
Eqs. (20),

1
q̇

d( pq̇ 2 L1) ∧ d(rq̇ 2 L2)

5
1
q̇ Fq̇ dp 1 p dq̇ 2 1­L1

­q
dq 1

­L1

­q̇
dq̇2G

∧ Fq̇ dr 1 r dq̇ 2 1­L2

­q
dq 1

­L2

­q̇
dq̇2G

5
1
q̇

(q̇ dp 2 ṗ dq) ∧ (q̇ dr 2 ṙ dq)

5 q̇ dp ∧ dr 1 ṗ dr ∧ dq 1 ṙ dq ∧ dp

Comparing these equations, we obtain
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5
q̇ 5

­(H1, H2)
­( p, r)

ṗ 5
­(H1, H2)

­(r, q)

ṙ 5
­(H1, H2)

­(q, p)

which are the same equations as Eqs. (4). This guarantees the reasonableness
of the postulate of the existence of two Lagrangians and our definition of
Hamiltonians corresponding to them in Eq. (21).

The generalization of the preceding results to the case including multiple
Nambu momenta, where dynamical variables consist of n-tuples (x1, . . . , xn)
[5 (q, p1,. . . , pn21)], is straightforward. Remark that there exist n 2 1
Lagrangians L1(x1, ẋ1), . . . , Ln21(x1, ẋ1) and the principle of least action holds
for each Lk. The Nambu momenta are defined as follows. The first momentum
x2 [ ­L2/­ẋ1 (i.e., p1 [ ­L1/­q̇), the second momentum x3 [ ­L2/­ẋ1 (i.e.,
p2 [ ­L2/­q̇), . . . , the (n 2 1) th momentum xn [ ­Ln21/­ẋ1 (i.e., pn21 [
­Ln21/­q̇). The n 2 1 Hamiltonians H1 (x1, . . . , xn), . . . , Hn21(x1, . . . , xn)
are defined as

dH1 ∧ ??? ∧ dHn21 [ (ẋ1)2(n22) d(x2ẋ1 2 L1)

∧ ??? ∧ d(xnẋ1 2 Ln21) (n $ 2) (22)

Then we obtain

5
ẋ1 5

­(H1, . . . , Hn21)

­(x2, . . . , xn)
???

ẋk 5 (21)k11
­(H1, . . . , Hn21)

­(x1, . . . , xk21, xk11, . . . , xn)
???

ẋn 5 (21)n11
­(H1, . . . , Hn21)

­(x1, . . . , xn21)

as the equations of motion.
Using these equations, we have for any function f 5 f (x1, . . . , xn)

df
dt

5
­f

­x1
ẋ1 1 ??? 1

­f
­xk

ẋk 1 ??? 1
­f

­xn
ẋn

5
­f

­x1

­(H1, . . . , Hn21)

­(x2 . . . , xn)
1 ???
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1
­f
­xk

(21)k11
­(H1, . . . , Hn21)

­(x1, . . . , xk21, xk11, . . . , xn)

1 ??? 1
­f

­xn
(21)n11

­(H1, . . . , Hn21)

­(x1, . . . , xn21)

5
­( f, H1, . . . , Hn21)

­(x1, x2, . . . , xn)

This is just equal to the most generalized form of the Nambu equation of
motion (3).

For n 5 2 Eq. (22) turns out to be the differential form of the definition
of the Hamiltonian in the Legendre transformation in standard analytical
mechanics:

dH 5 d( pq̇ 2 L) (23)

where we employ q and p instead of x1 and x2. Therefore we can conclude
that Eq. (22), the definition of Hamiltonians in the case of many Hamiltonians
via many Lagrangians, is a natural generalization of Eq. (23). We have shown
the generalized Legendre transformation valid in the Nambu formalism of
mechanics; it supplements the lack of a relation between Lagrangians and
Hamiltonians in developments hitherto made for Nambu mechanics.

6. CONCLUSION

Nambu mechanics was proposed as a generalization of the usual Hamilto-
nian mechanics. In analytical mechanics, we have the Lagrangian form of
mechanics in parallel to the Hamiltonian one, and there is a connection that
each central function is transformed by the Legendre transformation together
with the change of fundamental dynamical variables (q, q̇) } (q, p). If Nambu
mechanics is to be a genuine generalization of usual analytical mechanics,
it should have its counterpart of Lagrangian form.

In papers about Nambu mechanics, many authors have laid emphasis
on the Hamiltonian formalism and not on the Lagrangian formalism; the
appropriate Lagrangian formalism for Nambu mechanics has not been given
even if the Lagrangians were treated. In this paper (especially, in Section 5),
by use of the exterior differential form, we formulated Nambu mechanics in
the Lagrangian formalism and showed that Nambu mechanics is formulated
as well in the Lagrangian formalism as in the Hamiltonian formalism. We
found that the exterior differential form offers great advantages in formulating
Nambu mechanics.
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Some authors [6–11] concluded that Nambu mechanics could be embed-
ded in Hamiltonian mechanics. As we have seen in this paper, however,
Nambu mechanics, which was first proposed as a generalization of the usual
Hamiltonian mechanics, can be formulated as well in the Lagrangian form.
The meaning of the generalization is as follows. In the usual Lagrangian and
Hamiltonian formalism the q’s are generalized coordinates and the p’s are
their conjugate momenta defined as p [ ­L/­q̇, while in our formulation of
Nambu mechanics the q’s are the same as in the usual case, but the p’s are
two or more variables corresponding to p1 [ ­L1/­q̇, p2 [ ­L2/­q̇, . . . . In
the simplest case, for example, we may take the triplet of dynamical variables
(q, p, r) as a coordinate (q) and the first and the second momentum ( p, r).
As a result, we can say, in contrast to refs. 6–11, that Hamilton mechanics
is to be embedded in Nambu mechanics; namely, the usual Hamiltonian (and
Lagrangian) mechanics is interpreted as a special case of Nambu mechanics
in which the number of Hamiltonians (and consequently Lagrangians) is
only one.

We expect to find that Nambu mechanics can be used to describe certain
physical phenomena that cannot have be appropriately described by means
of the usual Hamiltonian mechanics.
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